On limit systems for some population models with cross-diffusion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Non-Local Population Models with Non-Linear Diffusion

In this paper we present some theoretical results concerning to a non-local elliptic equation with non-linear diffusion arising from population dynamics.

متن کامل

On epidemic models with nonlinear cross-diffusion

Modelling and simulation of infectious diseases help to predict the likely outcome of an epidemic. A well-known generic model type for the quantitative description of the epidemic evolution dynamics by an ordinary differential equation is provided by so-called SIR models. These models classify a population into “suscepti-ble” (S), “infected” (I) and “recovered” (R) subgroups. One very early and...

متن کامل

A study of some diffusion models of population growth.

The stochastic differential equations of many diffusion processes which arise in studies of population growth in random environments can be transformed, if the Stratonovich stochastic calculus is employed, to the equation of the Wiener process. If the transformation function has certain properties then the transition probability density function and quantities relating to the time to first atta...

متن کامل

On Persistence and Stability of Some Biological Systems with Cross Diffusion

The concept of cross diffusion is applied to some biological systems. The conditions for persistence and Turing instability in the presence of cross diffusion are derived. Many examples including: predatorprey, epidemics (with and without delay), hawk-dove-retaliate and prisoner’s dilemma games are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series B

سال: 2012

ISSN: 1531-3492

DOI: 10.3934/dcdsb.2012.17.2745